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Abstract
The cohesive energies of L12, D022, D023 and selected one-dimensional
long-period structures (1D-LPSs) based on the L12 structure in the Ti–Al
system for the TiAl3 composition have been obtained by ab initio calculations
using the Vienna ab initio simulation package. The 1D-LPSs are described
within an Ising-like antiphase boundary (APB) model and we take into account
both cell-external and cell-internal relaxations in the determination of their
structural stability. Thus, the values of the APB energies are obtained in the
ideal, distorted and fully relaxed structures. The results show that it is necessary
to consider long-range interactions in order to obtain reliable values of the APB
energies. We also relate these so-obtained APB energies to the energetic value
of an isolated APB.

1. Introduction

The study of early-transition-metal (TM) trialuminides, TMAl3, is of both technological and
fundamental interest. The TMAl3 compounds are attractive as potential structural materials
for use in high-temperature environments or as thermally stable precipitates for developing
so-called ‘super alumalloys’.

Furthermore, it is important to emphasize that the crystal structure of these TM
trialuminides depends on the location of the early TM in the periodic classification. The stable
cubic L12 structure occurs for ScAl3 only at room temperature and tetragonal D022 and D023

structures appear as the number of d electrons of the TM element increases. It is tempting
therefore to relate the ordering tendency of such TM compounds to their electron to atom
ratio [1]. Another way to analyse this ordering tendency is to note that the tetragonal D022 and
D023 structures are derived from the cubic L12 by inserting (001) antiphase boundaries (APBs)
3 Author to whom any correspondence should be addressed.
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every fcc cube along the (001) axis for the D022 structure and every two fcc cubes for the D023

one. For instance, if the interactions between the APBs are neglected, the (001) APB energy
may be deduced directly from the energy difference between L12 and D022 structures:

E AP B = ED022 − EL12 . (1)

Considering the energy difference from L12 of the D023 structure, one obtains in this simple
model

E AP B = 2(ED023 − EL12). (2)

In relations (1) and (2), the APB energy is defined per atom if the energies of L12, D022 and
D023 are expressed per atom.

Another interest in using the APB as an energetic criterion for phase stability is to relate
the mechanical properties of these compounds to their structures since the energies involved
in the formation of APBs are instrumental in most theories of the yield behaviour of ordered
intermetallics.

But let us turn back to the study of the structural stability of these arrangements, which is
the purpose of the present work. We can say that, if the antiphase energy is small, the system
will be degenerated since several arrangements of APBs will compete with the L12 structure.
For some alloys, such a behaviour may lead to the occurrence of one-dimensional long-period
structures (1D-LPSs). This kind of chemical ordering has been discovered by Johansson and
Linde [2] in the Au–Cu alloys and, more recently, 1D-LPSs have been observed in the Ti–Al
system, more particularly for the Ti1+x Al3(1−x) alloys [3, 4].

The understanding of the thermodynamical behaviour of 1D-LPSs represents a great
challenge; for the TiAl3 compound, we propose to study the structural stability of series
of 1D-LPSs based on the L12 structure by means of ab initio total-energy calculations. We
shall show that the simple model leading to equations (1) and (2) is not sufficient to explain the
relative stability of such 1D-LPSs and we shall propose discussing the relative stability in the
framework of a more sophisticated APB Ising model. More particularly, we shall focus on the
influence of both cell-external distortion and cell-internal atomic displacements of the atoms
on the interaction parameters of the APB Ising model. Indeed a study performed by Amador
et al [5] using the full-potential linear muffin tin method has shown how the relaxation effects
influence the relative stability of the L12, D022 and D023 structures in the TiAl3 compound.

The remainder of the paper is as follows. In section 2, the 1D-LPSs based on the L12

structure are briefly described. In section 3, we present the APB Ising model, which will
be used further to analyse the structural stability of the 1D-LPSs. The ab initio calculations
have been performed using the Vienna ab initio simulation package (VASP); the basis of this
computer code and the conditions of the calculations are given in section 4. The results of the
VASP calculations are presented in section 5. The determination of the interaction parameters
of the APB Ising model is presented in section 6. Finally, section 7 summarizes the paper and
gives the conclusions.

2. One-dimensional long-period structures

The 1D-LPSs we shall consider in the following are derived from the cubic L12-type structure
A3B (figure 1). L12 is ordered on the face-centred cubic lattice and consists, along the (001)
cubic direction, of a stacking of pure A planes alternately with mixed AB planes. In the
stacking sequence of pure and mixed planes, the translation [001] connects minority atoms in
subsequent mixed layers. In contrast, in the D022 structure presented in figure 1 a translation
of c/2 along the z axis connects minority atoms to majority atoms. The D022 structure may
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Figure 1. L12, D022 and D023 1D-LPSs.

be viewed as a periodic arrangement of (001) APBs in the L12 structure, the minimal length
between the APBs being equal to the height of the L12 cell. D022 is denoted 11̄ in Zdanov’s [6]
notation or 〈1〉 in the notation of Fisher and Selke [7, 8]. 〈2〉 1D-LPS (or D023) consists of a
stacking of four L12 cubes with the same antiphase shift every two cubes. The 〈M〉 1D-LPS,
M being an integer, consists of a stacking of 2M L12 cubes with the same antiphase shift every
M cubes. The 1D-LPSs can be characterized by the average domain size, usually denoted M ,
which is the ratio of the period and the number of domains or the number of L12 unit cells
divided by the number of APBs in the 1D-LPS unit cell.

Along the z axis, the 1D-LPSs can be seen as Ising chains of spins + and −. Here + and
− spins describe the two atomic species A or B in the (001) mixed planes. The L12 structure
corresponds to the ferromagnetic + + + + + + state as the D022 structure corresponds to the
antiferromagnetic + − + − + − + − state. An APB with respect to the L12 structure is like
a magnetic domain wall separating two different ferromagnetic domains. Alternatively an
APB with respect to the D022 structure is like a magnetic domain wall separating two different
antiferromagnetic domains. With this description of the APBs, the 44 (or 〈4〉) 1D-LPS which
is + + + + − − − − possesses in its unit cell two APBs with respect to L12 (++ + +/− − − −/)
and six APBs with respect to D022 (+/+/+/+−/−/−/−). Similarly the 211211 (or 〈212〉) which
is + + − + − − + − in the spinlike description possesses in its unit cell six APBs with respect
to L12 (+ +/−/+/− −/+/−/) and two APBs with respect to D022 (+/+ − + −/− + −). Let us
remark that the 〈211〉 1D-LPS is obtained from 〈4〉 by overturning alternate spins. Similarly
〈1〉 is obtained from L12 by overturning alternate spins, and 〈21〉 from 〈3〉; in this spin change
〈2〉 is not modified. More generally, the 〈21 j〉 1D-LPS with M ′ = j + 2 is obtained from the
〈M〉 1D-LPS with M = M ′ by overturning alternate spins.

When one considers 1D-LPSs as based on the D022 structure, it is more convenient to
give the period of the superstructure in term of the size M ′ of the D022 antiphase domain still
measured in units of the underlying L12 structure. M ′ is related to M by M ′ = M

M−1 . M ′ = ∞
for the D022 structure, 1 for L12, 2 for D023, 3 for 〈21〉, 4 for 〈211〉 described previously and
j + 2 for the 〈21 j〉 1D-LPS.
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3. Antiphase boundary energy model

As proposed by Bak and Bruinsma [9] and more recently by Rosengaard and Skriver [10],
the energy difference of a 1D-LPS from the underlying structure, either L12 or D022, may be
mapped onto a one-dimensional effective Ising Hamiltonian in a field. In this description, the
presence of an APB is represented by ↑ with σ = 1

2 while the absence is represented by ↓ with
σ = − 1

2 ; the field is given by the APB energy, E AP B . The interactions between neighbouring
APBs are given by In and Hn,m for two-and three-body interactions respectively. The energy
difference from the reference structure for a given 1D-LPS is

ES − E〈re f 〉 = 1

N

∑
i

(
σi +

1

2

)
E AP B +

1

N

∑
j>i

I j−i

(
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2

)(
σ j +

1

2

)

+
1

N

∑
j>i>k

Hi−k, j−i

(
σi +
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2

)(
σ j +

1

2

)(
σk +

1

2

)
(3)

where the sums are restricted to nearest-neighbour spins. In the following we shall restrict the
three-body interaction to the first term H1,1.

When taking the L12 structure as the reference, the energy difference from L12 of 〈M〉
1D-LPSs, M being an integer, is

M(E〈M〉 − E〈∞〉) = E AP B + IM + I2M + · · · . (4)

The APB energy with respect to L12, E AP B , is the limit of M(E〈M〉 − E〈∞〉) when M → ∞,
but one can expect that expansion (4) converges rapidly. If this is the case, the value of
M(E〈M〉 − E〈∞〉) becomes constant from some small value of M and the APB energy with
respect to the L12 structure is equal to this constant.

When taking the D022 structure as the reference, energy differences from D022 of the
1D-LPS 〈21 j〉, j being an integer, are given by

M ′(E〈21 j 〉 − E〈1〉) = E ′
AP B + I ′

M ′ + I ′
2M ′ + · · · (5)

with M ′ = j + 2. The APB energy with respect to D022 is the limit of M ′(E〈21 j 〉 − E〈1〉) when
M ′ → ∞, and if expansion (5) converges rapidly the value of M ′(E〈21 j 〉 − E〈1〉) becomes
constant from some small value of M ′ and the APB energy with respect to D022, E ′

AP B , is
equal to this constant. One can show that the coefficients of the two expansions (4) and (5) are
related. The connecting relation between the APB energies is

E ′
AP B = −E AP B − 2

∑
M0−1

IM0−1 − 3H1,1 (6)

where M0 is the value of M or M ′ from which the interaction coefficients can be taken equal
to zero.

The purpose of the following is to obtain, from ab initio total-energy calculations, the
energy differences from L12 of series of 1D-LPSs 〈M〉 with M an integer and 〈21 j〉. From
these energy differences, the APB energy and the interaction parameters will be obtained.
Moreover, we shall show that this determination depends on how we compute the energy
differences.

4. Ab initio calculations

The calculations presented here were performed using the VASP, which has been
described elsewhere [11–13]. All calculations were performed in the generalized gradient
approximation (GGA) proposed by Perdew and Wang [14]. The electron–ion interaction is
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described by ultrasoft pseudopotentials which allow the use of a moderate cut-off for the
construction of the plane-wave basis even for TMs (222 eV for Ti). For the present calculation
of ultrasoft pseudopotentials, the atomic reference configurations were 3p6 4s1 3d3 for Ti and
3s2 3p1 for Al. For Ti, it is essential to include the 3p states as valence states in order to obtain
correct lattice parameters. For Ti, the radii for the calculations of the augmentation functions
are Raug,l = 2.20, 2.00 and 2.49 au for l = 2, 1, 0, respectively; for Al, Raug,l = 2.36 for l = 1
and 0. Partial core corrections were introduced to enable a proper treatment of the nonlinear
dependence of the exchange–correlation functional on the charge density.

For the total-energy calculations of the Al3Ti compound in the L12 structure (four atoms
in the primitive cell) a 10 × 10 × 10 k-point mesh was chosen. For the 1D-LPS, the same
k-point mesh along x and y axes was retained. Along the z axis, the number of k points was
reduced as the length of the 1D-LPS increased. We saw in section 3 that the important result of
the calculations is the energy difference of a given 1D-LPS from the L12 structure. To improve
the precision of this difference, a L12 superstructure containing the same number of L12 unit
cells as the considered 1D-LPS has been studied using the same number of k points and its
cohesive energy calculated. For each 1D-LPS, the energy difference from L12 is calculated
with respect to the corresponding L12 superstructure.

5. Results

5.1. Equilibrium structures

From L12 to D022, and to the other 1D-LPSs, symmetry elements are progressively lost so
that relaxation degrees of freedom increase correspondingly. In the L12 structure, the energy
is optimized with respect to the lattice parameter a only. In the D022 structure, the energy
optimization is performed with respect to the lattice parameter a and with respect to the c/a
ratio (tetragonal distortion of the lattice). Finally, in the D023 and other 1D-LPSs, the lattice
parameter a, the c/a ratio (tetragonal distortion of the lattice) and additionally the cell-internal
displacements of Ti and Al atoms are optimized.

The lattice parameters obtained in the volume optimization procedure are reported in
figures 2 and 3 respectively for the 〈M〉 and 〈21 j〉 1D-LPSs. The tetragonality reported for
one L12 unit cell is presented in figures 4 and 5 respectively for the 〈M〉 and 〈21 j〉 1D-LPSs. In
the case of ideal structures, the convergenceof the lattice parameters of the 〈M〉 1D-LPSs to the
value obtained in the L12 structure is fast. Similarly the convergence of the lattice parameters
of the 〈21 j〉 1D-LPS to the lattice parameter of the ideal D022 is also fast. In contrast, for
the distorted and fully relaxed phases 〈M〉 and 〈21 j〉, the convergence becomes slower and
one may observe that the lattice parameters a of the 〈M〉 1D-LPSs differ from that of the L12

structure and that the lattice parameters a of the 〈21 j〉 1D-LPSs differ from that of the D022

structure.
The energy differences from L12 of all the 1D-LPSs studied in the present work are

reported in table 1. In the ideal case, the ground state is L12. With distortion only, the D022

structure is the ground state. For the fully relaxed phases, the D023 structure is the most
stable 1D-LPS; this result is unexpected because experimentally TiAl3 crystallizes in the D022

structure [15]. However, our result is in perfect agreement with that obtained by Amador et al
[5], who found that D023 is the ground state but by a very small margin. It must be noticed
that the displacements of the atoms are small, and it is expected that these displacements will
cancel with increasing temperature, explaining why D022 is observed experimentally at room
temperature. One must also quote that the L12 structure has been observed experimentally
under particular circumstances (see for example [16]). The values of the energy differences
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Figure 2. Lattice parameters of the 〈M〉 1D-LPSs. �, ideal structures; �, distorted structures; ◦,
fully relaxed structures.
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Figure 3. Lattice parameters of the 〈21 j 〉 1D-LPSs. �, ideal structures; �, distorted structures;◦, fully relaxed structures.

from L12 of the series of 1D-LPS 〈21 j〉 are very near that of D022 in the distorted case: this
explains why 1D-LPSs with one and two bands have been observed experimentally in the
Ti–Al system near the TiAl3 composition by Miida et al [3] and by Loiseau et al [4].
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Figure 4. Tetragonality of the 〈M〉 1D-LPSs. �, distorted structures; ◦, fully relaxed structures.
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Figure 5. Tetragonality of the 〈21 j 〉 1D-LPSs. �, distorted structures, ◦, fully relaxed structures.

5.2. Constrained structures

In the previous paragraph, we have seen that the lattice parameters a of the 〈M〉 1D-LPSs differ
from that of the L12 structure and that the lattice parameters a of the 〈21 j〉 1D-LPSs differ
from that of the D022 structure. Therefore it seems difficult from the previous results to obtain
the energy of an isolated APB either in the L12 or in the D022 structure. Indeed to obtain true
information on an isolated APB it is necessary to perform calculations with a constant lattice
parameter a, that means with constrained structures. Then, when studying the APBs in the
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Table 1. Values of the energy differences from L12 of equilibrium 1D-LPSs in meV/atom.

1D-LPS Ideal Distorted Fully relaxed

〈1〉 46.4 −25.0 −25.0
〈2〉 10.8 −20.8 −33.2
〈3〉 5.5 −9.6 −21.9
〈4〉 3.6 −4.5 −14.8
〈5〉 3.5 −1.4 −10.5
〈6〉 2.5 0.1 −8.7
〈7〉 2.1 0.3 −7.5
〈21〉 19.4 −18.9 −31.6
〈212〉 25.8 −20.8 −30.9
〈213〉 29.9 −20.8 −29.2
〈214〉 32.5 −19.6 −28.4
〈215〉 34.9 −19.9 −27.8

Table 2. Values of the energy differences from L12 of 1D-LPSs constrained to the a lattice
parameter of the equilibrium L12 structure in meV/atom.

Distorted structures Fully relaxed structures
1D-LPS along z axis along z axis

〈1〉 33.3 33.3
〈2〉 2.0 −16.0
〈3〉 1.5 −13.0
〈4〉 1.5 −10.7
〈5〉 2.0 −8.2
〈6〉 1.9 −6.7
〈7〉 1.4 −6.3

Table 3. Values of the energy differences from L12 of 〈21 j 〉 1D-LPSs constrained to the a lattice
parameter of the equilibrium distorted D022 structure in meV/atom.

Distorted structures Fully relaxed structures
1D-LPS along z axis along z axis

〈1〉 −86.2 −86.2
〈2〉 −78.6 −89.2
〈21〉 −78.1 −89.0
〈212〉 −81.4 −89.2
〈213〉 −81.3 −88.9
〈214〉 −82.6 −88.7
〈215〉 −82.9 −88.4

L12 structure, the lattice constants in the x and y directions were fixed to the values obtained in
the L12 structure. The c/a ratio along the z axis as well as the displacements in this direction
were optimized. The results of such calculations are presented in table 2. Similarly, when
studying the APBs in the D022 structure, the lattice constants in the x and y directions were
fixed to the values obtained in the D022 structure. The c/a ratio along the z axis as well as the
displacements in this direction were optimized. The results of such calculations are presented
in table 3.
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Figure 6. VASP-calculated values of the energy differences from L12 multiplied by M of 〈M〉
1D-LPSs. �, ideal structures; �, distorted structures; ◦, fully relaxed structures. The crosshairs
represent the values calculated with the APB model using the fitted APB energy and interaction
parameters.

6. Application of the APB Ising model

6.1. Equilibrium structures

We shall first consider the equilibrium 1D-LPSs. In these conditions, the parameters of the APB
Ising model will give indications of the relative stabilities of the 1D-LPSs. In the following
we shall use two methods to derive the values of E AP B and E ′

AP B .

6.1.1. Method 1. In the APB model, the value of E AP B is theoretically obtained from the
value of M(E〈M〉 − E〈∞〉) when M → ∞. Similarly the value of E ′

AP B is obtained from
M ′(E〈21 j 〉 − E〈1〉) when M ′ → ∞. The energy differences from L12 of 〈M〉 1D-LPSs, in
the form M(E〈M〉 − E〈∞〉), are reported in figure 6. Likewise the M ′(E j

〈21〉 − E〈1〉) values for
the 〈21 j〉 1D-LPSs are reported in figure 7. In each case, ideal, distorted and fully relaxed
structures have been considered. In the ideal case, both M(E〈M〉 − E〈∞〉) and M ′(E〈21 j 〉− E〈1〉)
values converge rapidly and become constant from M or M ′ equal to four. The value of E AP B

is obtained as the mean value of M(E〈M〉 − E〈∞〉) for M = 4–7. Like wise, the value of E ′
AP B

is obtained from the mean value of M ′(E〈21 j 〉 − E〈1〉) for M ′ = 4–7. These values are reported
in tables 4 and 5. In the case of distorted 1D-LPSs, the convergence is much slower, and it
is only for the phases with M or M ′ equal to six and seven that both M(E〈M〉 − E〈∞〉) and
M ′(E〈21 j 〉− E〈1〉) are practically constant; the values of E AP B and E ′

AP B obtained with the 〈M〉
phases or with the 〈21 j〉 phases are reported in tables 4 and 5. For the fully relaxed phases, the
situation is intermediate and one can consider that both M(E〈M〉 − E〈∞〉) and M ′(E〈21 j 〉 − E〈1〉)
are constant from M or M ′ equal to five. The corresponding values of E AP B and E ′

AP B are
reported in tables 4 and 5. The method used above to obtain the APB energies will be called
method 1 in the following.
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represent the values calculated with the APB model using the fitted APB energy and interaction
parameters.

Table 4. APB energies with respect to L12 of the equilibrium 1D-LPSs. The values are given in
meV/atom.

Ideal Distorted Fully relaxed

ED022 − EL12 46 −25 −25
2(ED023 − EL12 ) 22 −42 −66
E AP B (method 1) 15 1 −52
E AP B (method 2) 16 −1 −55

Table 5. APB energies with respect to D022 of the equilibrium 1D-LPSs. The values are given in
meV/atom.

Ideal Distorted Fully relaxed

EL12 − ED022 −46 25 25
2(ED023 − ED022) −36 4 −8
E AP B (method 1) −82 34 −20
E AP B (method 2) −83 39 −13

6.1.2. Method 2. However the strategy employed above to obtain the values of E AP B and
E ′

AP B does not give any information on the interaction parameters between the APBs. To
obtain this information, it is necessary to fit the values of the energy differences E〈M〉 − E〈∞〉
and E〈21 j 〉 − E〈∞〉 in a unique fit because we have shown before that the coefficients of the two
expansions (4) and (5) are related. Therefore the values of E〈M〉 − E〈∞〉 and E〈21 j 〉 − E〈∞〉
have been fitted among expression (3) to obtain the parameters of the APB Ising model. Note
that only the first three-spin interaction term has be taken into account, let us say H1,1. Various
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Table 6. Fitted parameters of the APB Ising model with respect to L12. The values are given in
meV/atom.

Ideal Distorted Fully relaxed

E AP B 15.3 −0.9 −55.2
I1 18.7 41.4 38.2
I2 6.3 −21.6 −5.6
I3 1.3 −24.2 −7.3
I4 0 −19.1 −5.6
I5 0 −11.1 0
H1,1 4.9 9.7 9.7
σ 0.1 0.3 0.2

tests have been performed in which the number of effective pair interaction parameters has
been modified. In each case, the standard deviation has been calculated; the goal is to obtain
the best fit with the smallest number of parameters. In the ideal case, besides E AP B and H1,1,
it is necessary to introduce three more parameters, let us say I1, I2 and I3. The fit of the values
of E〈M〉 − E〈∞〉 and E〈21 j 〉 − E〈∞〉 is excellent. In the distorted case, seven parameters were
necessary to obtain a good fit, E AP B , H1,1 and I1–I5. For the fully relaxed structures, six
parameters, E AP B , H1,1 and I1–I4, were necessary to obtain the best fit. As expected, these
numbers of parameters are in each case the same as predicted from inspection of figures 6
and 7. All the parameter values as well as the standard deviation are reported in table 6. The
calculated parameters are those relative to the APB model with respect to L12.

The values of M(E〈M〉−E〈∞〉) and M ′(E〈21 j 〉−E〈1〉) in the ideal, distorted and fully relaxed
cases, recalculated with the three sets of parameters deduced from the fitting procedure, are
reported in figures 4(a) and (b). In the ideal case, the representation is excellent. For the
distorted and fully relaxed 1D-LPSs, the representation is less satisfying for M or M ′ equal to
six or seven. This point will be explained further. The fitting procedure will be called in the
following method 2.

6.1.3. Discussion on the APB model parameters. From inspection of the values of the
APB interaction parameters (table 6), one observes that the first-nearest-neighbour interaction
parameters are always strongly positive, showing a repulsion between first-nearest-neighbour
APBs. The other interaction parameters are either positive and negative.

The values of E AP B and E ′
AP B obtained by method 2 are reported in tables 4 and 5

respectively, where they may be compared with the values obtained in method 1. In the ideal
case, the difference between the values of E AP B and E ′

AP B obtained by method 1 and by
method 2 is well within the accuracy of the calculations. In the distorted and fully relaxed
cases some differences between the APB energies obtained by method 1 or method 2 appear.
Let us recall that in method 1 E AP B and E ′

AP B are obtained independently for the 〈M〉 1D-LPSs
and for the 〈21 j〉 ones, while in method 2 the two sets of values are treated in the same model.
The observed differences are due to these different treatments. On the other hand, it must be
mentioned that the difference is a maximum of 7 meV, which is very small when looking at
the precision of the cohesive energy determination and at the fact that the energy differences
are multiplied by M or M ′ in figures 6 and 7 and in tables 4 and 5.

Let us now discuss the values of E AP B and E ′
AP B energies. In the ideal case, E AP B

is positive, showing that APB formation in L12 is not energetically favoured. In contrast,
E ′

AP B is negative, showing that the formation of APBs in the ideal D022 structure is strongly
energetically favoured.
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Figure 8. VASP-calculated values of the energy differences from L12 multiplied by M of 〈M〉
1D-LPSs whose lattice parameter, a, has been constrained to that of the L12 structure. �, distorted
structures; ◦, fully relaxed structures.

In the distorted case, E AP B is negative but very small in absolute value. If one looks at
the values obtained for 〈6〉 and 〈7〉 1D-LPSs, the APB energy with respect to L12 is slightly
positive; the formation of APBs in the L12 structure to give 1D-LPSs of type 〈M〉 (M being an
integer) is not energetically favoured. On the other hand, E ′

AP B is clearly positive: the creation
of APBs in the D022 structure is not favourable energetically, and therefore the D022 structure
is the stable one.

In the fully relaxed case, both E AP B and E ′
AP B are negative. Therefore, neither L12 nor

D022 is the most stable structure, and indeed D023 is the ground state.
The values of E AP B and E ′

AP B , if they were obtained from the energy differences from
L12 of D022 or of D023 structures, are reported in the two first rows of tables 4 and 5. Inspection
of the values shows that, if the correct sign is almost always obtained, the values can differ
by twice as much. Therefore, it is absolutely necessary to take into account the interactions
between the APBs in order to obtain the APB energies. Moreover, it is necessary to perform
ab initio calculations for a large number of 1D-LPSs to test the convergence of the expansion
used in the APB model.

6.2. Constrained structures

Let us now consider the constrained 1D-LPSs. In this case, the values obtained for E AP B and
E ′

AP B can be considered as those of isolated APBs either in L12 or in the D022 structures.
The values of M(E〈M〉−E〈∞〉) obtained for the 〈M〉 1D-LPSs constrained to have the same

parameter as the equilibrium L12 structure are reported in figure 8. The values are practically
constant from M = 5. The derived APB energies are reported in table 7.

The values of M ′(E〈21 j 〉 − E〈1〉) obtained for the 〈21 j〉 1D-LPSs constrained to have the
same parameter as the equilibrium D022 structure are reported in figure 9. As above, these
values are practically constant from M ′ = 5. The derived APB energies are reported in table 8.
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Figure 9. VASP-calculated values of the energy differences from D022 multiplied by M ′ of 〈21 j 〉
1D-LPSs whose lattice parameter, a, has been constrained to that of the D022 structure. �, distorted
structures; ◦, fully relaxed structures.

Table 7. APB energies with respect to L12 of the constrained 〈M〉 1D-LPSs for the L12 lattice
parameter a. The values are given in meV/atom.

Distorted structures Fully relaxed structures
along z axis along z axis

ED022 − EL12 33 33
2(ED023 − EL12 ) 4 −64
E AP B (method 1) 10 −42
γAP B (mJ m−2) 40 170

Table 8. APB energies with respect to D022 for constrained 1D-LPSs at the lattice parameter a of
the equilibrium D022 structure. The values are given in meV/atom.

Distorted structures Fully relaxed structures
along z axis along z axis

EL12 − ED022 86 86
2(ED023 − ED022) 30 −12
E AP B (method 1) 23 −15
γAP B (mJ m−2) 98 65

As in section 6.1, we observe that the APB energies cannot be obtained solely from the
energy differences from L12 of the D022 and D023 structures.

We must remark that method 2 indicated previously (section 6.1.2) has not been used
because its application would necessitate the calculations of the 〈21 j〉 energies at the L12
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lattice parameter and 〈M〉 energies at the D022 lattice parameter to obtain the interaction
coefficients with sufficient precision.

The values of the APB energies reported in tables 7 and 8 can be considered as the energy
of an APB isolated either in the L12 or in the D022 structure. These values reported to the area
unit are given by

γ /L12 = E AP B

a2
L12

/4
and γ /D022 = E ′

AP B

a2
D022

/4
. (7)

The factor of four has been introduced because the APB energies given in tables 7 and 8 are
expressed per atom. a is the lattice parameter along x and y axes of either the L12 or the
distorted D022 structure.

In the approach developed in section 6.1, we obtained the energetic parameters of an APB
Ising model for the purpose of describing the behaviour of the L12, D022, D023 and other
1D-LPSs. In this section we have obtained the energy of an isolated APB. Although these
approaches are different, the comparison of the APB energies obtained with the equilibrium
1D-LPSs and with the constrained ones indicates only small differences.

7. Summary and conclusions

Some years ago Paxton [17] showed that it is possible to bring together the theory of alloys, as
seen from the density functional point of view, and practical problems in physical metallurgy.
In the present work, we have employed such a strategy to obtain APB energies from ab initio
calculations of cohesive energies. Indeed the cohesive energies of two series of 1D-LPSs,
let us say 〈M〉 with M an integer and 〈21 j〉, were obtained with a code based on the density
functional theory in the GGA. The calculations were performed for rather large values of M
or M ′ (up to M or M ′ = 7). More, these calculations were performed for ideal, distorted
and fully relaxed structures. To improve the energy difference from L12 of the 1D-LPSs, L12

superstructures have been built and their cohesive energies calculated with the same number
of k points as used for the corresponding 1D-LPS. The results have been discussed in the
framework of an APB Ising model, whose parameters have been obtained. These calculations
have shown that, in the case of ideal structures, APB formation is not energetically favoured
in the L12 structure while it is energetically favoured in the D022 structure. In the distorted
case, the APB energy is very small in the L12 structure, while it is strongly positive in the D022

structure. This supports the fact that L12 can be maintained in a metastable state and that D022

is the most stable structure at ordinary temperature. In the fully relaxed situation, which can
be considered as the situation at very low temperature, the APB energies with respect to L12

and to D022 are both negative, showing that neither L12 nor D022 is the ground state; actually
at T = 0 K the ground state is the D023 structure.

We have also proved, in this work concerning the TiAl3 compound, that the energy
differences from L12 of D022 and D023 structures solely are not sufficient to derive APB
energies with a good precision. Moreover, we have also shown that, in the TiAl3 compound,
all the relaxation effects, cell-external distortion and cell-internal displacements of the atoms,
must be taken into account in order to obtain correct values of the APB energies.

Finally we have shown that the energy of an isolated APB obtained with constrained
1D-LPSs is not very different from that obtained with the APB Ising model applied to the
equilibrium 1D-LPSs.
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